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Key Points: 17 

• A toolkit for determining the oxygen isotopic signature of historical source water to trees is 18 

presented. 19 

• The parameterization of ISO-Tool is subdivided based on data availability and output resolution. 20 

• The tool is designed to retrospectively assess water source usage by plants at annual and sub-21 

annual timescales. 22 

 23 

ABSTRACT 24 

Hydrological regimes are being perturbed under climate change due to the regional expression 25 

of the water cycle across the globe, leading to alterations in the spatial and temporal distribution of 26 

water near the Earth’s surface. Water is a critical resource for forest ecosystems and hydrological 27 

limitations on vegetative health are particularly complex. To anticipate how subsurface water availability 28 

may evolve in the future and affect the dynamics of plant water-source usage, as well as the health and 29 

functioning of vegetation in various biomes, we need a robust, quantitative framework for linking water 30 

availability to past plant water-use, which is constrained by historical data. Here, we outline the 31 

Identification of Source-water Oxygen isotopes in trees Toolkit (ISO-Tool), designed to retrospectively 32 
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investigate the dynamics of tree-water uptake. ISO-Tool utilizes tree-ring isotopes (δ18O) combined with 33 

a biomechanistic fractionation model to predict the δ18O of water utilized during any period of growth. 34 

Through comparisons with measured δ18O in local water sources, climatic and hydrological variables, 35 

ISO-Tool can reconstruct and inform on past ecohydrological interactions. We provide an overview of 36 

the modeling components and data requirements necessary to constrain the retrodictions of source-37 

water δ18O. We demonstrate the utility and efficacy of ISO-Tool for three riparian field sites 38 

characterized by differences in climatic, geomorphic and hydrologic complexity. However, ISO-Tool can 39 

be applied to a range of vegetated environments where distinct isotopic endmembers exist. We present 40 

a set of tool groups, which can be applied adaptively, ensuring that scientific progress in understanding 41 

retrospective ecohydrology can be made, even under varying degrees of data availability. 42 

 43 

1 INTRODUCTION 44 

1.1  Background            45 

Forests worldwide are becoming increasingly vulnerable to variations in water availability as 46 

hydrological regimes respond to climate change (Allen et al., 2010, 2015; Choat et al., 2012; Clark et al., 47 

2011; Hartmann et al., 2013). Yet, despite the fundamental role water plays in the health, productivity 48 

and distribution of tree species (Currie & Paquin, 1987; Hsiao, 1973; Schulze et al., 1987; Stephenson, 49 

1990), there remain considerable uncertainties in how terrestrial water availability to forests will evolve 50 

under future climate (Allen & Ingram, 2002; Donat et al., 2016; IPCC, 2014; Sippel et al., 2017; Trenberth 51 

et al., 2014). Such shortcomings result from the incomplete characterization of moisture sources over a 52 

range of timescales, which is further complicated by the contribution of several potential sources to 53 

tree-available water. These sources include infiltrated precipitation in the vadose zone and shallow 54 

groundwater in the phreatic zone, where the latter can be derived from hyporheic streamflow 55 

contributions to shallow water tables (Busch et al., 1992; Evans et al., 2018; Singer et al., 2014; White & 56 

Smith, 2013). Therefore, for any interval of time, the particular water source used by a tree is a function 57 

of specific tree rooting depths as well as by the time-varying availability of root-zone water, which varies 58 

in response to climatic trends and fluctuations (Dawson & Pate, 1996; Snyder & Williams, 2000). The 59 

details surrounding these dynamic ecohydrological relationships are poorly understood, a knowledge 60 

gap which restricts our ability to anticipate how forests will respond to alterations in hydrological 61 

regimes that may affect one or both soil hydrological reservoirs (vadose and phreatic), particularly in 62 

regions where water is expected to become a limiting resource to tree growth (Bréda et al., 2006; 63 

García-Ruiz et al., 2011; Lindner et al., 2010).  64 
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To address this shortcoming, we take a retrospective approach and identify two fundamental 65 

questions: 1) What water source was used by a tree during a particular period of growth? 2) Does this 66 

water source utilization correspond to the dynamics of root-zone water availability? If these questions 67 

can be answered satisfactorily for a particular site, we believe this information on plant-water 68 

relationships could dramatically improve studies of ecohydrology, paleoclimate, and land surface 69 

dynamics within forest ecosystems. 70 

Severe moisture deficits can reduce tree growth and biomass production (Berner et al., 2017; 71 

Charru et al., 2010; Sarris et al., 2011; Silva et al., 2010), increase the susceptibility to pathogen 72 

infestations and eventually lead to mortality from hydraulic failure and/or carbon starvation (Allen et al., 73 

2010; Breshears et al., 2005; McDowell et al., 2011; Schlesinger et al., 2016). Through differential 74 

responses to moisture stress, individual tree and species’ mortality rates can lead to altered stand 75 

demographics and composition, and thus ecosystem functioning (Clark et al., 2016; Hansen et al., 2001; 76 

Milad et al., 2011), whilst moisture limitations in the rooting zone may also determine whether 77 

particular tree species can get recruited and established at riparian sites (Mahoney & Rood, 1998; Singer 78 

& Dunne, 2004). These are key concerns, given the significant role trees play globally in carbon and 79 

water cycling (Bonan et al., 2008; Ciais et al., 2005; Ellison et al., 2017; Jasechko et al., 2013; Kurz et al., 80 

2008; Settele et al., 2014) and in the provision of ecological services (Anderegg et al., 2013). Critically, 81 

forest vulnerability to drought conditions is not restricted to environments typically considered as 82 

moisture limited. Amazonian forest mortality was linked to drought conditions experienced in 2005 83 

(Phillips et al., 2009) and 2010 (Lewis et al., 2011), with the later drought spanning 3.2 million km2 (25 % 84 

greater than that of 2005). Furthermore, Chen et al., (2017) attributed trembling aspen die back in 85 

western Canadian boreal forests to insufficient water availability. 86 

Retrospective insights into patterns of tree source water use (at seasonal and annual resolution) 87 

would be particularly useful for riparian zones, where phreatophytic forest species are highly dependent 88 

on the hydrological connectivity between the river and floodplain phreatic aquifer (Singer et al., 2014). 89 

Phreatophytes are sensitive to changes in shallow alluvial groundwater availability which can manifest 90 

as declines in healthy forest stands, reduced ecological services (Amoros & Bornette, 2002; Steiger et al., 91 

2005; Stromberg et al., 2007) and shifts in the successional states of forest communities (e.g. Stromberg 92 

et al., 1996; Shafroth et al., 2000). Information about the timing and origin of tree source waters would 93 

also allow for accurate determinations of the ecohydrological impacts arising from river flow regulation 94 

practices (i.e. minimum flow requirements), river bed-level changes (e.g. gravel extraction / downstream 95 
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of dam construction) and to identify critical thresholds for groundwater abstraction. Such information 96 

would promote more sustainable water management strategies in forests where water resources are 97 

also under increasing population pressures (Jackson et al., 2001).  98 

We believe that a simple, yet effective, methodology for determining historical sources of water 99 

used by trees, would be highly valuable in improving scientific enquiry in isotopic ecohydrologic 100 

investigations. Such an approach would need to be well defined, easily accessible and adaptable.  101 

In this paper, we build on existing research by combining and enhancing a set of techniques to 102 

identify historical water-sources (δ18Osw) used by trees, based on information from tree-ring cellulose 103 

(δ18Ocell), plant physiology, hydroclimate and a biomechanistic fractionation model (Roden et al., 2000; 104 

Barbour et al., 2004). This is presented in the form of a methodological ‘toolkit’ called the Identification 105 

of Source water Oxygen isotope Toolkit (ISO-Tool), for which we identify and explain the necessary data 106 

requirements and provide examples of its application. We distill these requirements and data sources 107 

and present them in the form of a tiered ‘Tool Group’ scheme, to provide a means to straightforwardly 108 

reconstruct the historical source water signatures of trees at annual or sub-annual scales. Our goal here 109 

is not to necessary develop a method for highly accurate characterization of past water usage by plants, 110 

but rather to enable researchers to better ascertain likely water sources to plants for particular periods 111 

of time, to distinguish between plant water sources within sites for different species, and to identify 112 

how plant water sources may vary along hydroclimatic gradients.  113 

 114 

1.2 Isotope echoydrology 115 

Stable isotope ratios of oxygen and hydrogen in water (δ18O and δ2H) have been used to trace 116 

the sources of waters used by plants through the comparison of the isotopic signatures of potential 117 

endmember sources (e.g. soil, groundwater, surface waters) with those of waters extracted from the 118 

xylem (e.g. Bertrand et al., 2014; Dawson & Ehleringer, 1991; Dawson & Pate, 1996; Horton et al., 2003; 119 

Jackson et al., 1999; Schulze et al., 1996; White et al., 1985). This is based on broad evidence that no 120 

isotopic fractionation occurs between the soil water pool and the plant during root uptake (Allison et al., 121 

1983; White et al., 1985), although δ2H fractionation has been reported in some halophytes and woody 122 

xerophytes (Ellsworth & Williams, 2007; Lin & Sternberg, 1993). This means that the water taken up by a 123 

tree retains isotopic information specific to its origin and history within the hydrological cycle at the 124 

point of uptake. Characterizing plant source waters via isotope analysis is particularly powerful if 125 

potential endmember water sources, e.g. precipitation (P) or groundwater (GW) are isotopically distinct 126 
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and locally defined. This a fundamental principle when considering the use of δ18O/δ2H for 127 

ecohydrological studies (Barbeta et al., 2018). 128 

If combined measurements are made of δ18O and δ2H in xylem and potential endmember water 129 

sources, information relating to the evaporative history of the water (relative to local precipitation 130 

input) can be obtained, although such information is not necessary for identifying plant water sources 131 

(Sprenger et al., 2016). 132 

Soil composition, texture and water status (e.g. Chen et al., 2017; Oshun et al., 2016; Vargas et 133 

al., 2017) have all been proposed causes of the fractionation of oxygen and hydrogen isotopes in plant-134 

available water, prior to uptake, highlighting the need for careful consideration of these factors during 135 

investigations, as well as further research (for an overview, see Barbeta et al., 2018). Nevertheless, if 136 

such results are interpreted carefully, then stable isotope analyses remain a powerful method for 137 

understanding plant-water interactions. Herein, only δ18O ecohydrology is discussed, since this isotope 138 

ratio functions as a better conservative tracer of water in ecosystems than δ2H due to its higher mass 139 

and binding energy. 140 

Commonly, the distinct hydrological reservoirs i.e. vadose (unsaturated) and phreatic 141 

(saturated) zones are characterized by differences in their water δ18O content and water in these zones 142 

is preferentially used by different species (Singer et al., 2014). However, where potential source waters 143 

are isotopically similar, disentangling the water source use can be challenging (Drake & Franks, 2003).  144 

Water in the vadose zone typically inherits an isotopic signature reflective of precipitation 145 

(δ18Oppt) inputs (Robertson & Gazis, 2006) which varies seasonally as a function of temperature, air mass 146 

origin and history (Dansgaard, 1964; Gat, 1996). For temperate environments, this is exemplified by 147 

depleted and enriched δ18O of precipitation in the winter and summer, respectively. The isotopic 148 

composition of soil moisture can also represent a time-varying mixture of isotopically separate 149 

precipitation events, which may also include the effects of near-surface evaporative enrichment, leading 150 

to the development of isotopic profiles in soil water with depth (Allison et al., 1983; Gazis & Feng, 2004; 151 

Hsieh et al., 1998; Sprenger et al., 2016).  152 

In contrast, the δ18O signature of phreatic water typically has low temporal variability, and it is 153 

often isotopically depleted in relation to vadose zone moisture, especially if GW is sourced from regional 154 

snowmelt runoff (colder percolated precipitation) (Gat, 1996) and/or is mixed with streamflow (Q) 155 

(Dawson & Ehleringer, 1991). However, there may be situations where isotopically distinct 156 
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groundwaters contribute to a rooting zone. Sargeant and Singer (2016) suggested that isotopically 157 

dissimilar waters, derived from different climatic regimes, may interact within a shallow alluvial aquifer 158 

receiving both a regionally derived GW and water derived from locally infiltrated precipitation. A 159 

pragmatic approach would be to isotopically characterize the potential water sources within a field site, 160 

ensuring that isotopic separation of plant available waters is possible (Barbareta et al., 2018). 161 

 162 

1.3 Source water availability 163 

In environments where both vadose and shallow phreatic waters are available, tree species can 164 

employ different physiological strategies for obtaining water. Deeply rooted phreatophytic species 165 

prefer phreatic water sources derived from shallow aquifers (Busch et al., 1992) and capillary rise, yet 166 

may also exhibit opportunistic behavior, switching to shallow soil moisture (or using combination of 167 

both) under periods of water deficit (Singer et al. 2013, 2014; Snyder & Williams, 2000; Sun et al., 2016). 168 

Shallowly rooted species are unable to access deeper phreatic water, so they rely on vadose moisture 169 

which is sensitive to balance between precipitation inputs and near-surface evaporation, although it is 170 

possible that capillary rise during a period of elevated water table can supply phreatic water to the 171 

unsaturated zone (Sánchez-Pérez et al., 2008). Additionally, plant roots can redistribute water across a 172 

soil-water potential gradient (hydraulic redistribution), both vertically and laterally (Brooks et al., 2002; 173 

Caldwell et al., 1998; Richards & Caldwell, 1987), allowing water from different depths and distances to 174 

be utilized by neighboring plants (Dawson, 1993), and complicating source-water identification. Studies 175 

which provide detailed ecohydrological information are typically based on comparisons between the 176 

contemporaneous measurements of tree xylem waters with those of local water sources (e.g. 177 

Plamboeck et al., 1999; Sánchez‐Pérez et al., 2008). Whilst direct analysis of xylem δ18O circumvents the 178 

leaf fractionation and exchange mechanisms which mask the source water δ18O information stored in 179 

δ18Ocell (McCarroll & Loader, 2004), studies of this sort are limited by the temporal domain of field work 180 

(typically 2-3 years), restricting the development of broader conclusions about ecohydrological 181 

interactions (Pettit & Froend, 2018). Long-term, seasonal reconstructions of tree source-waters δ18O 182 

could yield potentially powerful new information about water availability to trees, and thus hydrological 183 

processes, whilst also providing historical context for real-time investigations. 184 

 185 

1.4 Tree-ring oxygen isotopes 186 
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In order to gain retrospective insights into plant-water interactions over longer timescales, tree-187 

ring isotopes represent an under-utilized excellent library of accurately dated isotopic information on 188 

tree water usage. The oxygen isotope ratio (18O/16O) contained within tree-ring cellulose (δ18Ocell) can be 189 

used to characterize the isotopic signature of the source water(s) (δ18Osw) used during the time of ring 190 

formation, thereby providing an extended record of ecohydrological processes (McCarroll & Loader, 191 

2004). Tree-ring δ18O fractionation theory is largely well established (McCarroll & Loader, 2004), 192 

although some uncertainties remain regarding the timing and transfer of photosynthates from source to 193 

sink tissues, which is relevant for finer scale studies (Gessler et al., 2009; Offerman et al., 2011; Ogée et 194 

al., 2009). Whilst there is the possibility for the remobilization of stored carbohydrates, formed at an 195 

early period, this more evident in δ13C measurements than those of δ18O in tree rings (Hill et al., 1995) 196 

The δ18Ocell records an integrated isotopic signal of three components: (a) the signatures of 197 

trees’ source water taken up from the rooting zone; (b) leaf-water enrichment as a function of 198 

evaporation (Dongmann et al., 1974; Flanagan et al., 1991); and (c) the biochemical fractionation that 199 

occurs during photosynthesis (Sternberg et al., 1986; Yakir & DeNiro, 1990). A final mechanism during 200 

cellulose synthesis allows for a proportion of oxygen atoms in sucrose to exchange with δ18Osw, damping 201 

the leaf-level fractionation effects (Farquhar et al., 1998; Hill et al., 1995; Roden et al., 2000). While 202 

there is a consistent enrichment (27 ± 4 ‰) of photosynthate δ18O, compared with leaf water (δ18Olw), 203 

leaf water enrichment is much more variable responding to atmospheric conditions and leaf level gas 204 

exchange relating to species’ physiology (McCarroll & Loader, 2004; Roden et al., 2000). 205 

Studies utilizing tree-ring δ18Ocell have been able to provide insights into historical water 206 

availability to trees, although use of the ‘raw’ δ18Ocell to infer water source assumes that climatic 207 

variables and tree-physiological responses are uniform across a study site or between sites, and the 208 

relative differences measured in δ18Ocell are therefore solely a function of δ18Osw differences. For 209 

example, Marshall and Monserud (2006) suggested that differences observed in tree-ring δ18Ocell of 210 

three co-located species over eight decades could be attributed to shifts in tree water source use, whilst 211 

Singer et al. (2013) suggested that fluctuations in floodplain hydrology strongly controlled the source 212 

water availability and utilization for two tree species with contrasting rooting profiles. However, in order 213 

to provide direct comparisons with endmember water sources, it is necessary to determine the δ18Osw 214 

from the δ18Ocell value. Using detailed measurements of the primary controlling variables of δ18O 215 

fractionation in leaves (E - transpiration, gs - stomatal conductance, δ18Owv – atmospheric water vapor 216 

δ18O, RH – relative humidity and T – air temperature), it is possible to model the relationship between 217 

xylem water (δ18Oxyl) and δ18Ocell ,to varying degrees, based on the quality of input data (Barbour et al., 218 
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2004; Roden et al., 2000). This relationship can be used to inversely hindcast (model) the δ18O of source 219 

waters used for the formation of each tree ring (δ18Omsw) (Bose et al., 2016; Sargeant & Singer, 2016; 220 

Singer et al., 2014). Earlier work by Anderson et al., (2002) demonstrated the potential for 221 

reconstructing historical δ18Oppt from δ18Ocell by calibrating the model (incorporating climate variables 222 

and tree growth) against records of δ18Oppt.  223 

The model calculations of δ18Omsw can then be verified against field measurements of the 224 

evolving isotopic composition of contributing water sources (P, GW). Using this approach, direct 225 

comparisons between δ18Omsw with local endmember water source δ18O have suggested that co-226 

occurring tree species with distinct rooting depths (e.g. Fraxinus spp. and Populus spp.) often access and 227 

utilize different mixes of water sources at annual and sub-annual timescales, as a function of fluctuating 228 

hydro-climate and relative depths to local GW (Sargeant & Singer, 2016; Singer et al., 2014).  229 

Identifying tree source water(s) requires information on how the potential local endmembers 230 

vary in their δ18O signature on both annual and sub-annual timescales, which is particularly complex in 231 

situations where there may exist more than one potential water source available for tree growth 232 

(Sargeant & Singer, 2016; Singer et al., 2014). Furthermore, fluctuations in source water mixtures modify 233 

the isotopic signature of root-available water, thus challenging interpretations of water sources 234 

consistently available to trees (Busch et al., 1992; Dawson & Ehleringer, 1991; Sánchez-Pérez et al., 235 

2008; Snyder & Williams, 2000). Despite these challenges, the identification of δ18Osw is critically 236 

important, especially considering that changes in soil water content may outpace the ability for new 237 

root growth to track such shifts (Plamboeck et al., 1999). 238 

We demonstrate our methodology for three Mediterranean, riparian forest sites, at both annual 239 

and sub-annual resolutions, highlighting the ability of the ISO-Tool to discern valuable ecohydrological 240 

information at different timescales. Whilst our examples are based on riparian forests, ISO-Tool is also 241 

suitable for other forested environments where a distinct isotopic separation exists between potential 242 

water sources used for tree growth over different time periods. Our aim is to provide a new suite of 243 

methods to enable a greater understanding of forest ecohydrology in response to climatic fluctuations 244 

and trends in subsurface hydrology. 245 

2  METHODS            246 

2.1 Identification of Source water Oxygen isotope ratios in trees Toolkit (ISO-Toolkit)   247 



 

Sargeant et al., Page 9 
 

The core principle of this research is that δ18Ocell can be deconvolved to the δ18Osw taken up from 248 

the rooting zone during a particular growing season. The method utilizes an iterative modeling approach 249 

to model the source water δ18Osw signature (δ18Omsw), which is then directly comparable to the δ18O of 250 

potential endmember water sources. In this section, we explore the calculations of δ18Omsw and how the 251 

user defined input variables are used. We then analyze the sensitivity of the mechanistic model to these 252 

different input variables.  Subsequently, we describe how key variables can be constrained in order to 253 

improve the accuracy of the δ18Omsw calculations and we outline the data and methods that can be used 254 

to help interpret the model output. Combined, these form a methodological toolkit, which can be 255 

utilized for determining historical plant water use in a variety of forest ecosystems.  256 

An overview of ISO-Tool is shown schematically in Figure 1. ISO-Tool, an open-source code 257 

available in two forms, enables the back-calculation of δ18O of water sources used by plants based on 258 

measured δ18Ocell, climate and plant physiological variables. This code is based on the Barbour et al. 259 

(2004) model for plant δ18O fractionation but modified to invert the problem. 260 

The required user inputs of the toolkit are predefined in the following sections, but the manner 261 

in which these are constrained is governed by specific Tool Group selections. These data are added to 262 

the input file and must comprise of an average value with an estimate of standard deviation (SD) . From 263 

these, the model generates normal distributions that are repeatedly sampled by Monte-Carlo 264 

simulation, which produces an error margin of ±2 SD. From the mean input values, the model also 265 

calculates the mean δ18Omsw value. The mean and standard deviation error bounds are produced as a 266 

plot and an associated output file is generated. The modeling script is editable to enable a ‘bespoke’ 267 

analysis through the modification of individual parameters (detailed below), but which are not currently 268 

included as requirements within the input file. Presently, the model uses an optimization routine to 269 

predict the δ18O value of source water, δ18Omsw. The model results (δ18Omsw) can then be interpreted by 270 

the user from a selection of possible techniques contained within the Tool Groups necessary to 271 

characterize source water availability to trees. 272 

The δ18Omsw modeling script is provided as a Matlab code (doi: 10.5281/zenodo/1161221) with 273 

the input and output files in .csv (.txt) format. The model is provided at: 274 

https://github.com/blissville71/InverseBarbourModel. Here, the user will find downloadable files of the 275 

model as a Matlab code (includes Monte-Carlo simulations) and a Microsoft Excel version (excludes 276 

Monte-Carlo simulations), plus an example input file and accompanying instructions /overview for the 277 

model’s rationale and use. 278 

2.2 Modeling source water δ18O (δ18Omsw) 279 

https://github.com/blissville71/InverseBarbourModel
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The δ18Omsw is predicted from a known δ18Ocell by accounting for the tree-level fractionations and 280 

exchange processes which alter the δ18Osw signature until cellulose formation. In Figure 2a-d, the key 281 

components of the model are shown, as well as how required user input data is used in these equations, 282 

with an accompanying conceptualization in Figure 2e.  283 

The extent to which transpiration enriches δ18Osw at the sites of evaporation (Δe) in the leaf, is 284 

fundamental in determining the recorded variability in δ18Ocell values. The Δe model is based on the work 285 

by Craig and Gordon (1965) and later modified for the leaf environment (Dongmann et al., 1974; 286 

Farquhar & Lloyd, 1993; Flannagan et al., 1991): 287 

∆𝑒= (1 + 휀∗) [(1 + 휀𝑘) (1 −
𝑒𝑎

𝑒𝑖
) +  

𝑒𝑎

𝑒𝑖
 (1 + ∆𝑣)] − 1 (1) 

 288 

which can be approximated as:  289 

 
∆𝑒 ≈ 휀∗ +  휀𝑘 + (∆𝑣 −  휀𝑘)

𝑒𝑎

𝑒𝑖
 (2) 

 290 

The evaporative enrichment of source water within the leaf is given in Figure 2a & e, and 291 

assumes an isotopic steady state, which is appropriate for our purposes since we rely on 292 

photosynthetically derived substrates (δ18Ocell), reflecting daytime leaf conditions during which an 293 

isotopic steady state is approached (Cernusak et al., 2016). Within the model, Tl is assigned as T+1 (°C), 294 

as a simplifying assumption. An energy balance equation could be incorporated to compute a realistic Tl, 295 

but it would require additional data inputs (e.g. wind speed, leaf width, photosynthetically active 296 

radiation) that are typically unavailable for historical reconstruction (Barbour et al., 2000; Lorrey et al., 297 

2016).  298 

Although boundary layer conductance is an important component of 휀𝑘, difficulties in 299 

determining time-varying values (Brenner & Jarvis, 1995) may necessitate the use of a fixed value of 1 300 

mol m2s-1 (Barbour et al., 2004). In reality, boundary layer conductance varies as a function of leaf shape, 301 

size and thickness, stomatal density, wind velocities and energy balance (Buhay et al., 1996; Jarvis & 302 

McNaughton, 1986; Schuepp, 1993; Stokes et al., 2006). Constraining all of these parameters requires a 303 

much more detailed investigation beyond the scope of this study. However, both leaf temperature 304 



 

Sargeant et al., Page 11 
 

(offset from air temperature) and boundary layer conductance values can be assigned at the user’s 305 

discretion. 306 

The magnitude of leaf water evaporative enrichment has been shown to be over-predicted by 307 

the equation in Figure 2a (Cernusak et al., 2016 and references therein). Farquhar and Lloyd, (1993) 308 

proposed that such discrepancies resulted from a Péclet effect, whereby the advection of unenriched 309 

source water via transpiration is opposed by the diffusion of enriched water to and from the sites of 310 

evaporation, respectively, operating over a given distance divided by the molar density of water and 311 

diffusivity of H2
18O in water (Figure 2b, c & e). As such, under high transpiration rates, the level of leaf 312 

water enrichment declines.  Values of L (mm) can be calculated as a function of E based on the study of 313 

Song et al., (2013). They developed a regression between L and E for several different tree species (L = 314 

2.36 x 10-5E-1.20
, R2 = 0.813), where the regression function is expressed in meters (m). We included this 315 

relationship within our code so L is computed only based on E (obviating direct measurements of L). We 316 

also utilized the R-squared value to provide an error around these estimates. Barbour et al. (2004) 317 

showed that the inclusion of the Péclet effect improved their model estimates of the isotopic signature 318 

in cellulose (relative to source water), accounting for 89 % of the variability in their study.  319 

During photosynthesis, sucrose molecules are enriched +27±4 ‰ above leaf water δ18O as the 320 

result of carbonyl-bound oxygen atom exchange between triose phosphates and the medium water 321 

(Sternberg et al., 1986; Yakir & DeNiro, 1990). It is this sucrose which is utilized to form cellulose, a 322 

process by which a proportion of intermediary molecules are able to exchange with unenriched xylem 323 

water (δ18Osw) (Farquhar et al., 1998; Hill et al., 1995) (Figure 2d & e). The fraction of oxygen atoms 324 

undergoing this exchange is controlled by the proportion of unenriched source water within the cell 325 

during cellulose synthesis. The fraction of exchanged oxygen atoms is reported as 0.42 for many tree 326 

species (Roden et al., 2000), whilst the source water content is assumed to be at unity for large, mature 327 

trees where the distance between leaf and sink tissue is considerable (Barbour et al., 2002). The overall 328 

effect of this process is to dampen evaporative enrichment signature transferred to the cellulose 329 

molecule at the leaf level.  330 

2.3 Sensitivity analyses          331 

We conducted a series of sensitivity analyses on the calculation of δ18Omsw in response to 332 

variations in T, RH, δ18Owv, as well as to paired values of gs and E. We began by varying each of these 333 

input variables independently and then advanced the analysis through a covariance of two variables 334 
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(Figure 3). During each sensitivity test, variables not under analysis were kept constant as indicated in 335 

Figure 3 ‘Default values’. Leaf gas exchange parameters used in all model runs are those from Singer et 336 

al., (2014) for Fraxinus excelsior.  337 

2.3.1 δ18Ocell, δ18Owv and RH 338 

The δ18Omsw predictions respond primarily to changes in RH, δ18Owv and δ18Ocell when each 339 

respective input is varied independently (Figure 3a). It should be noted that these results are only 340 

representative of the interactions occurring between changing variable and the default values of the 341 

remaining inputs indicated in Figure 3a. 342 

We included δ18Ocell to illustrate the positive response we expect on δ18Omsw if all other variables 343 

are constant, thus, Δe is static so with increasing δ18Ocell there must be a corresponding enrichment in 344 

δ18Omsw (+1.5‰/‰). For δ18Owv, a negative relationship exists with δ18Omsw (-0.6‰/‰) (Figure 3a). The 345 

dependence of Δe on δ18Owv can be shown using equation (2). If ea/ei = 1 (saturated conditions), then Δe 346 

= ε* + Δv (Cernusak et al., 2016), because enrichment in δ18Owv causes depletion in δ18Omsw in 347 

compensation. For RH there is a strong, positive, curvilinear relationship with δ18Omsw, so as RH 348 

increases, Δe decreases. This arises because δ18Omsw must undergo enrichment to maintain a given 349 

δ18Ocell.  350 

2.3.2 T, gs and E 351 

When T (i.e. Tl) was varied from 2-40 °C, δ18Omsw was shown to enrich by 3.3‰, a relatively weak effect 352 

on Δe over this large temperature range, compared to that of δ18Owv and RH. As Tl increases, the 353 

equilibrium fractionation factor, ε*, is reduced causing a decline in Δe. This produces an enrichment of 354 

δ18Omsw to maintain the static input δ18Ocell value. 355 

In order to test the sensitivity of gs (mol m-2s-1) and E (mmol m-2s-1), whilst also accounting for 356 

the physiological coupling between the two processes, these two variables were paired based on a 357 

simple expression derived from Fick’s law of diffusion where Δw is the leaf-to-air vapour pressure 358 

gradient (Dawson, 1996; Pearcy et al., 1989):  359 

𝐸 =  𝑔𝑠∆𝑤 (3) 

Calculations were conducted using the Roden model of evaporative enrichment (Roden & 360 

Ehleringer, 2000) in an Excel file format available at ftp://ecophys.biology.utah.edu/tree_ring/ (Barbour 361 

ftp://ecophys.biology.utah.edu/tree_ring/
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et al., 2004). Input values of gs ranged from 0.05 – 1.00 mol m-2s-1 at 101.3 kPa to generate paired 362 

estimates of E with a subsequent range of 0.40 – 4.20 mmol m-2s-1. We recommend caution in 363 

interpreting the results on the gs/E pairing sensitivity test because we have forced the dependence 364 

between the two. In reality, these variables might be expected to behave distinctly with variations in 365 

climate, subsurface water availability and between species. The effect of gs and E in the model is shown 366 

in Figure 3a. It indicates a negative relationship between gs / E and δ18Omsw leaf water.  The level of leaf 367 

water enrichment declines (at a constant ea) with increasing gs due to a reduction in leaf temperature 368 

and intercellular vapour pressure caused by increasing E (Barbour et al., 2007).  369 

2.3.3 Model sensitivity to covarying parameters 370 

We covaried input parameters to identify those which most strongly affect predictions 371 

(retrodictions) of δ18Omsw (Figure 3b-g). The δ18Ocell was kept constant at 30 ‰. The δ18Ocell represents 372 

the starting point for the model calculations, and all other variables interact independently of it. The 373 

variance of air T was shown to have very little interaction with other variables, as shifts in δ18Omsw are 374 

predominantly controlled RH, δ18Owv and gs/E (Figure 3b, d & g, respectively). RH had the greatest 375 

interaction with δ18Owv (Figure 3c) and gs/E (Figure 3f), producing a range in δ18Omsw of 29.1 ‰ and 21.5 376 

%, respectively for the range of plotted values. The interaction between δ18Owv and gs/E (Figure 3e) 377 

induced a 10.7 ‰ change in δ18Omsw over the range values for each respective variable. Since the range 378 

in co-variables presented are unlikely to represent field conditions, we varied the input values (T, RH, 379 

δ18Owv) using the range of variance observed for a study site in SE France for the growing seasons (May-380 

Sept) of 2000-2010. The results are shown as grey shading in Figure 3b-d and indicate that under the 381 

growing season climatic conditions, RH and δ18Owv remain the primary interacting controls of δ18Omsw, 382 

producing variations up to 6.1 ‰ over their respective ranges (Figure 3c). The effects were smaller for T-383 

RH and T-δ18Owv, which produced δ18Omsw ranges of 4.5 ‰ and 3.3 ‰, respectively (Figure 3b and d).  384 

The sensitivity analyses allow for straightforward identification of how the input variables to the 385 

biomechanistic model affect the predictions of δ18Omsw. By constraining the relevant variables and 386 

increasing the accuracy of the input data, the reliability of model output obviously also increases, and 387 

thus the characterization of the source water utilized by a tree during a particular time period is 388 

improved. It is evident from the sensitivity analyses that δ18Owv, RH and gs/E require the greatest 389 

constraints since their variability can introduce significant shifts in back-calculated values of δ18Omsw.  390 
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Through sensitivity analyses, we identified the required environmental (T, RH, δ18Owv) and 391 

physiological (gs, E) input variables responsible for modulating leaf level δ18O enrichment. By utilizing the 392 

model in inverse mode, for a known δ18Ocell, and driving it with time-dependent input variables, it is 393 

possible to calculate δ18Omsw taken up by the tree.  394 

 395 

2.4 Tool Groups – constraining input variables and interpretative techniques    396 

In this section we outline how the necessary model input variables can be obtained and 397 

summarize the interpretative techniques required to explain the resulting δ18Omsw values within a 398 

hydrological context. We begin by explaining the sampling and extraction procedures of tree-ring 399 

cellulose at annual and sub-annual resolutions, the essential input of the δ18Omsw model. Following this, 400 

we present three different tiers of data or ‘Tool Groups’ within ISO-Tool (Figure 4), which highlight the 401 

various approaches that can be drawn on to obtain values of T, RH, δ18Owv , gs/E required for model 402 

calculations and the various ways in which these results can be interpreted. The calculated δ18Omsw 403 

values are most useful if they can be compared to the potential water source endmembers which, in 404 

turn, require knowledge of the hydrological processes which control the availability of a particular water 405 

source to the tree’s rooting zone.  406 

The idea is that Tool Group A represents the optimal suite of techniques and its data inputs 407 

should be used whenever and wherever possible. However, when data limitations prevent the use of 408 

Tool Group A for particular variable, the second Tool Group (B) should be employed, where 409 

possible…and so on. Thus, in a real application, due to universal constraints on data, a researcher is 410 

likely to draw relevant data from all three tool groups. In the worst-case scenario, one could use data 411 

entirely from Tool Group C and still make progress in water source characterization from tree ring 412 

cellulose. The rationale for this classification is to highlight the potential to undertake research into 413 

historical ecohydrology even when the most desirable information is unavailable. Of course, the 414 

research question also governs which tool group is utilized. A critical point is that prior to conducting 415 

isotopic source water investigations, the location of study must exhibit isotopically distinct, potential 416 

endmember water sources (isotopic separation), which can be confirmed through exploratory δ18O 417 

analyses or from wider literature/ database searches. We encourage researchers to make additions and 418 

refinements to the ISO-Tool. 419 
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For an overview of the techniques listed in Figure 4, please see the supporting information. A more 420 

detailed discussion of the methodologies for Tool Group A can be found in supporting text S1 (Barbour 421 

& Farquhar, 2000; Beyer et al., 2016; Böttcher et al., 2014; Busch et al., 1992; Cocozza et al., 2016; Cuny 422 

et al., 2015; David et al., 2013; Dawson et al., 2002; Delattre et al., 2015; Gröning et al., 2012; Hao et al., 423 

2013; IAEA/GNIP precipitation sampling guide V2.02, 2014; Jarvis, 1995; Lambs et al., 2002; Meinzer et 424 

al., 1999; Parnell et al., 2008, 2010; Pearcy et al., 1989; Phillips & Gregg 2003; Robock et al., 2000; Rossi 425 

et al., 2006; Rundel & Jarrell,1989; S.U. et al., 2014; Scott et al., 2004; Snyder & Williams, 2000; Song et 426 

al., 2013; Soudant et al., 2016; Sprenger et al., 2016; Stokes, 2004; Volkmann & Weiler, 2014; West et 427 

al., 2006; White & Smith, 2013; Zencich et al., 2002; Zweifel et al., 2001), Tool Group B in supporting text 428 

S2 (Berkelhammer & Stott, 2009: Bowen & Revenaugh, 2003; Bowen & Wilkinson, 2002; Bowen et al., 429 

2005; Bowen, 2017; Delatrre et al., 2015; Entekhabi et al., 2010; GNIP, IAEA/WMO, 2017; Granier et al., 430 

1999; GSOD – ‘Global Surface Summary of the Day’, 2018; Hsieh et al., 1998; Jonard et al., 2011; Jones, 431 

1998; McNaughton & Jarvis, 1991; Oren et al., 1999; Richardson et al., 2007; Schwartz et al., 2002; 432 

Sprenger et al., 2016; Srivastava, 2017; Vicente-Serrano et al., 2010; West et al., 2006; Yale University, 433 

2017) and for Tool Group C, in supporting text S3 (Bowen et al., 2005; Bowen, 2017; Celle-Jeanton et al., 434 

2001; Delattre et al., 2015; Horita & Wesolowski, 1994; GNIP/GNIR, IAEA/WMO, 2017; Jacob & Sonntag, 435 

1991; Majoube, 1971; NOAA – ‘National Oceanic Atmospheric Administration’, 2018; Poyatos et al., 436 

2016; Sargeant & Singer, 2016; Singer et al., 2014; Suni et al., 2003; Wen et al., 2010). This is not 437 

designed to be an exhaustive review of all possible techniques for the interpretation of δ18Omsw, but to 438 

broadly identify the tools which could be utilized in source-water characterization. 439 

 440 

2.4.1 Tree-ring δ18Ocell 441 

The tree(s) chosen for isotopic analysis generally reflect particular research questions, but they 442 

would ideally be visually healthy individual specimens with distinguishable, annual growth rings in order 443 

to determine the associated climatic variables needed for modeling. Otherwise, it is challenging to 444 

constrain the timing of water use.  445 

After tree selection, tree-rings can be collected the form of tree-cores, obtained by an 446 

increment borer (e.g. at least 5 mm diameter) at breast height. Extracted tree-cores are ‘bladed’ to 447 

expose a uniform surface to maximize ring visibility. Cores should not be mounted with adhesive to 448 

prevent contamination of wood material and ethanol should be used to clean equipment. The tree-rings 449 
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corresponding to the years of interest can be identified through visual cross-dating or standard 450 

dendrochronological methods whereby ring widths are measured under a microscope using a tree-ring 451 

measurement program such as ‘Measure J2X Tree-Ring Measuring Programme’. Validation of cross-452 

dating can be achieved using a cross-correlation software such as COFECHA (Holmes, 1983). 453 

Alternatively, the cores may be scanned combined and ring-widths measured digitally with the 454 

coordinate measuring and cross dating software programs CooRecoder and CDendro, respectively 455 

(Larsson, 2014). Individual rings of interest are dissected with a scalpel and homogenized in preparation 456 

α-cellulose extraction.   457 

Sub-annual isotopic analysis of tree rings has been shown to contain additional information that 458 

is masked by annual (homogenized) whole-ring analyses and which may be important for understanding 459 

the seasonal dynamics of water availability (e.g. Roden et al., 2009; Sargeant & Singer, 2016). Tree-cores 460 

can be collected and processed as above but with each whole ring divided into sub-annual segments 461 

using a scalpel or microtome (e.g. Gärtner et al., 2014; Helle & Schleser, 2004). The number of divisions 462 

is determined by the researcher and we recommend conducting trials on surplus rings to ensure that 463 

each slice yields enough material cellulose mass for isotopic analysis.  464 

Tree-ring α-cellulose is the preferred material for isotopic analysis since it retains the δ18O 465 

information from the time of formation without undergoing any subsequent isotopic exchange (Wright, 466 

2008). In comparison, other components of whole wood material (e.g. hemicellulose, lignin, lipids and 467 

waxes) can exchange oxygen and may also represent different periods of synthesis (Battipaglia et al., 468 

2008; Gray & Thompson, 1977). The modified Brendel (MBrendel) method (Gaudinski et al., 2005), 469 

allows for batch processing with minimal laboratory equipment. McCarroll and Loader (2004) suggest 470 

that for softwoods, the high quantity of resins and extractions can be removed by a Soxhlet apparatus 471 

and a toluene-ethanol solution. 472 

The α-cellulose can be analyzed for 18O/16O using an online, continuous flow system of a TC/EA 473 

(Temperature Conversion Elemental Analyzer) connected to an Isotope Ratio Mass Spectrometer 474 

(IRMS). Results are reported in per mil (‰) deviation from Vienna Standard Mean Ocean Water 475 

(VSMOW δ18O = 2.0052 x 10-3 ‰) (equation [3], where Rs is the isotopic ratio of the sample and Rstd is 476 

that of the standard). This follows correction to the IAEA-CH3 (cellulose [Hunsinger et al., 2010]) 477 

standard, co-run with an internal lab standard and the effects of drift and linearity are accounted for to 478 

obtain δ18Ocell:   479 
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𝛿 𝑂18
𝑐𝑒𝑙𝑙  (‰) =  (

𝑅𝑠 − 𝑅𝑠𝑡𝑑

𝑅𝑠𝑡𝑑
) ∙ 103 (3) 

 480 

3 ISO-TOOL APPLICATIONS         481 

  In this section, we present three example applications of ISO-Tool to demonstrate its 482 

broad utility. Our examples illustrate water source characterizations drawing on components from each 483 

Tool Group for constraining model inputs and the interpretation of results (Figure 4). The sites are all 484 

located along the Rhône River, SE France (Table S1), and although we illustrate how ISO-Tool usage in 485 

riparian environments, we emphasize that it can be employed in any site where isotopically distinct 486 

water sources are present and where tree rings record annual growth. The δ18Ocell results from which 487 

δ18Omsw were calculated are in Figure S1a-c. We refer the reader to Figure 4 for each of the following 488 

case studies.  489 

Statistical analyses were conducted using Minitab (version 17) and are reported relative to the 490 

95% significance level. All statistical tests were conducted following the determination of sample set 491 

normality with the Anderson-Darling (A-D) test and analysis and equal variance using the Levene test. 492 

For the comparison of 2-sample means we used the T-test (T) or Mann-Whitney (Wilcoxon rank) test 493 

(U), whilst for >2 datasets an ANOVA (F-test) and post-hoc test (Tukey-Kramer/Games-Howell) was used 494 

to determine statistically similar groups. 495 

 496 

3.1 Example 1: Minimum flow restoration, Pierre-Bénite (PB) 497 

Riparian forests are often the focus of restoration schemes which aim to improve the level of 498 

hydrological connectivity through the raising of minimum discharge levels below dams to benefit aquatic 499 

ecology as well as riparian forests, but this has never been shown convincingly. This example is based on 500 

data from the Pierre-Bénite (PB) site where water managers increased the minimum dry-season river 501 

flow from 10 m/s to 100 m/s in the year 2000 to benefit aquatic ecology. This produced a mean water 502 

table rise within the floodplain of ~0.5 m (Amoros et al., 2005; Singer et al., 2014). In Singer et al., (2014), 503 

analysis of annual tree-ring δ18Ocell records from two cohorts of Populus nigra situated at relatively ‘high’ 504 

and ‘low’ floodplain elevations suggested that the flow restoration enabled phreatic water to become 505 

available to Populus rooted at low floodplain elevations. Since δ18Ocell cannot be directly compared with 506 

local water source δ18O signatures, we applied ISO-Tool to evaluate the conclusions of Singer et al., 507 

(2014).  508 
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Whole ring (annually resolved) δ18Ocell was used in this example (Figure S1a), with climate 509 

records of T and RH, corresponding to the observed growing season of May-September, obtained from a 510 

local climate station (meteofrance.com, 2017). The δ18Owv values were calculated using an equilibrium 511 

fraction factor (Majoube, 1971) using records of T and GNIP (IAEA/WMO, 2017)-OIPC (Online Isotopes in 512 

Precipitation Calculator) (Bowen, 2017; Bowen et al., 2005) estimates of δ18Oppt, assuming that δ18Owv 513 

was in isotopic equilibrium with δ18Oppt. Monthly estimates of δ18Oppt were obtained from the records of 514 

two equidistant GNIP (IAEA/WMO, 2017) monitoring stations (Figure S2a-b), averaged and correlated to 515 

monthly δ18O values for the site, obtained from the ‘Online Isotopes in Precipitation Calculator’ (Bowen, 516 

2017; Bowen et al., 2005) (Figure S2c). Literature-derived values of gs/E, were used. In situ 517 

measurements of δ18ORW were unavailable, thus necessitating the use of δ18ORW from 34 km 518 

downstream. Seasonal δ18Oppt for each year were computed by weighting the monthly δ18Oppt values by 519 

the corresponding P totals recorded at the climate station. Piezometric measurements of water table 520 

elevation were available for the study period (Figure S3). 521 

In Figure 5a, the δ18Omsw time series of each cohort is shown. Although there is a separation in 522 

cohort water use from 2000 onwards, with the ‘high’ cohort utilizing more enriched δ18Omsw than the 523 

‘low’ cohort (+0.9 ‰), it is not statistically significant (T18 = 1.68, p = 0.11). Neither the ‘high’ or ‘low‘ 524 

poplar trees displayed a shift in δ18Omsw following the flow restoration, drawing on an isotopically similar 525 

water source during both periods (‘high’: T19 = -1.20, p = 0.244; ‘low’: T19 = -0.65, p = 0.542). The 526 

implementation of a minimum river flow was seemingly insufficient to provide sustained phreatic water 527 

access to either cohort of trees. Instead, both cohorts seemingly relied on different mixtures of seasonal 528 

precipitation. It is possible that the water table elevation did make some portion of phreatic water 529 

available to Populus at low elevations, e.g. by capillary rise (Sánchez-Pérez et al., 2008), but its signature 530 

is masked by mixing with precipitation-sourced vadose moisture (Figure 5a). The lack of clear evidence 531 

of a phreatic water signature in δ18Omsw of either cohort after the flow restoration may be due to a 532 

combination of insufficient river flow to raise the water table relative to the fixed rooting architecture 533 

for mature trees of this species. It is possible that these Populus trees previously developed extensive 534 

vadose zone roots at the expense of deeper, vertical roots during the period when phreatic water was 535 

unavailable (i.e. pre-2000). This dimorphic rooting characteristic is advantageous in environments where 536 

phreatic and vadose zone moisture are seasonally variable (Singer et al., 2014).  537 

 538 

3.2 Example 2: Sub-annual water source use, Donzère-Mondragon (DM) 539 
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Seasonal variability in water sources may exert important controls on growing season water 540 

availability and corresponding tree health, which could be masked by whole tree-ring isotopic analysis 541 

(Sargeant & Singer, 2016). At the Donzère-Mondragon (DM) site we employed ISO-Tool to determine 542 

the sub-annual progression of δ18Omsw of two co-located (<5 m apart), streamside individuals of Fraxinus 543 

excelsior (roots restricted to the vadose zone by a coarse gravel layer) and Populus nigra (roots capable 544 

of phreatic zone access). The two-species approach can be used to investigate the seasonal dynamics of 545 

water partitioning within different hydrological reservoirs.  546 

We utilized the δ18Ocell from Sargeant and Singer (2016) (Figure S1b), but employ a longer 547 

growing season (MJJAS vs. MJJA) and the use of update to date GNIP (IAEA/WMO, 2017) records and the 548 

latest version of the OIPC (Figure S4). Sub-annual patterns and inter-species differences in δ18Omsw are 549 

evident wherein Fraxinus δ18Omsw is enriched by +2.4 ‰ compared to Populus (U = 17211, p <0.001) 550 

(Figure 5b) but a δ18Omsw convergence for both species from 2007-2010 (T58 = 0.59, p = 0.557). 551 

Prior to 2007, Fraxinus’ δ18Omsw generally follows a seasonal pattern, shifting from depleted 552 

earlywood (EW) to enriched latewood (LW) (+1.5‰). This suggests the use of non-growing season (NGS) 553 

δ18Oppt for EW (U = 1083, p = 0.716) and growing season (GS) δ18Oppt LW (U = 1318, p = 0.053) growth, 554 

since phreatic water is typically unavailable to Fraxinus roots due to the presence of a local gravel layer 555 

in floodplain soils (Singer et al., 2013, 2014). These water sources correspond to the evolving isotopic 556 

signature of vadose zone water during the growing season. However, in 2001 and 2003 the δ18Omsw and 557 

sub-annual pattern for Fraxinus is depleted compared with δ18Oppt. This may result from overbank 558 

flooding and/or a very elevated water table in these years of high streamflow (Sargeant & Singer, 2016), 559 

which delivers isotopically depleted water to the vadose zone. For this same period (2000-2006), the 560 

Populus tree exhibits much smaller swings in seasonal water use and it appears to have used a mix of 561 

NGS δ18Oppt and phreatic water for both EW and LW.  562 

During the water-use convergence period, Fraxinus δ18Omsw is similar to NGS and GS δ18Oppt, (F3,35 563 

= 2.96, p = 0.047) but distinct from δ18ORW (U = 737, p <0.001). Notably, Populus underwent a shift in 564 

δ18Omsw to that of δ18Oppt for both parts of the growing season (F3,36 = 8.10, p <0.001). This convergence 565 

water source use between these species indicates Populus switched from phreatic to vadose zone 566 

moisture uptake (e.g., use of NGS δ18Oppt in 2009, Figure 5b). The Populus water source shift suggests 567 

that the phreatic reservoir became inaccessible. An ancillary dataset provides evidence of local river 568 

incision of ~1.5 m (Figure S5) between 2003-2007 (Parrot, 2015). Downcutting of the riverbed reduces 569 

local river stage and by extension, lateral hyporheic flow into the floodplain, leading to a water table 570 
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decline. Thus, Populus roots apparently became stranded from the phreatic zone by river incision and 571 

were subsequently forced to rely on vadose zone water. 572 

 573 

3.3 Example 3: Annual vs. sub-annual water source use, Mas Thibert (MT) 574 

There are open questions as to whether gravel layers in river floodplains impede access to phreatic 575 

water with river floodplains for shallow-rooting species such as Fraxinus (Singer et al., 2014), and 576 

whether seasonal patterns of water use for such species are consistent across its distribution within the 577 

same region.  578 

 δ18Owv measurements taken from the nearby (7 km away) monitoring station of Delattre et al., (2015) to 579 

reconstruct historical δ18Owv and δ18Oppt for our study period (Figure S6) along with climate data (400 m 580 

away) sourced from MeteoFrance (meteofrance.com, 2017). This dataset and associated reconstruction 581 

enabled more accurate (nearly) site-based estimates of δ18Owv to the δ18Omsw and seasonal δ18Oppt, as 582 

opposed to those obtained from the nearest GNIP station (IAEA/WMO, 2017) at Avignon (~46 km north). 583 

We used reported values of leaf gas exchange (gs/E) for each species in similar environmental 584 

conditions. The stomatal conductance / transpiration rates for Fraxinus were 0.145 ±0.065 mol m-2s-1 / 585 

2.85 ±1.05 mmol m-2s-1 (Lemoine et al., 2001) and for Populus were 0.1625 ±0.1225 mol m-2s-1 /2.65 586 

±1.85 mmol m-2s-1 (Lambs et al., 2006). 587 

Figure 5c demonstrates that a high variability in water source use (δ18Omsw) is dampened within 588 

the whole-ring series. The sub-annual δ18Omsw within a single year of growth can range from 1.7 ‰ 589 

(2004) to 10.5 ‰ (2009), whilst the range in recorded annual δ18Omsw values is 4.8 ‰. The year 2009 590 

exhibits a substantial difference (8.5 ‰) between annual δ18Omsw (-5.4 ‰) and the third LW value of 591 

δ18Omsw (+3.1 ‰). This suggests that sub-annual information on water source uses can provide a more 592 

robust characterization of water use than annual data, and this information would enable better 593 

understanding plant-water relations. 594 

The δ18Omsw in EW is generally enriched by +2.0 ‰ compared to that in LW (T52 = 2.91, p = 595 

0.005), but see 2006 and 2009 when this pattern is reversed. Interestingly, the general pattern of 596 

enriched EW and depleted LW contrasts to the seasonal pattern of water use by the same species at DM 597 

(Figure 5b). This suggests differential seasonal availability of water at particular rooting depths between 598 

the two sites. River water is indistinguishable from shallow phreatic water (T16 = -1.00, p = 0.333) at MT, 599 

indicating that hyporheic flow from the Rhône is the main source of water to the alluvial aquifer. There 600 

is also a clear separation between the means of NGS and GS δ18Oppt (T20 = -2.61, p = 0.017) at this site 601 

because of a markedly warmer growing season that delivers isotopically enriched precipitation. Once 602 
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infiltrated into the vadose zone, this water becomes further enriched by evaporation before uptake by 603 

Fraxinus. 604 

Despite the absence of a gravel layer impeding Fraxinus rooting depth at MT, it still apparently 605 

relies on infiltrated precipitation. The greater enrichment in δ18Omsw for EW growth compared with LW 606 

may be driven by high spring-time evaporative enrichment of shallow vadose zone moisture arising from 607 

the strong and dry, northerly ‘Mistral’ winds, whilst the LW δ18Omsw may correspond to a relatively 608 

lessened evaporative enrichment controlled by summer temperatures. 609 

 610 

4 DISCUSSION AND CONCLUSION        611 

 612 

The ‘Identification of Source-water Oxygen isotopes in trees Toolkit’ (ISO-Tool), presented here, 613 

is designed to provide the necessary techniques to reconstruct the historical δ18Osw signatures used by 614 

trees for annual or sub-annual periods and to interpret these signatures in terms of hydroclimatic 615 

variability. ISO-Tool is designed to be used with three hierarchical ‘Tool Groups’ with different data 616 

requirements (and thus output resolution). These ‘Tool Groups’ enable investigations of tree water 617 

source use under various conditions of data availability. By bringing together techniques from multiple 618 

research fields (e.g. dendrochronology, stable isotopes, hydrological data analysis, tree physiology, 619 

ecohydrology) into a single and straightforward application framework, our aim is for ISO-Tool to be 620 

easily accessible to scientific researchers interested to retrospectively identify water sources to plants 621 

for a range of applications (e.g., to relate them to xylem water isotopes). We highlighted the utility of 622 

the toolkit under varying scenarios of data availability and provided several applications: restoration 623 

assessment (PB); seasonal water source use (DM) and a comparative analysis of low and high resolution 624 

δ18Ocell sampling (MT).  625 

The underlying principle of ISO-Tool is that the δ18Osw utilized for any period can be obtained by 626 

reversing the fractionation and exchange mechanisms responsible for producing the discrepancy 627 

between the δ18O of root zone moisture and that which is recorded in tree-ring in cellulose. Singer et al., 628 

(2014) and Sargeant and Singer (2016) utilized versions of this inverse modeling technique to determine 629 

the isotopic signature of water sources used by riparian trees at annual and sub-annual resolution, 630 

respectively. Recent work by Bose et al., (2016) reconstructed the isotopic value of soil water for trees 631 

over a larger spatial scale using thirteen δ18Ocell datasets. The present paper formalizes such methods 632 

into a set of tools for assessing historical water use by plants. 633 



 

Sargeant et al., Page 22 
 

The flexible modeling framework allows the user to define the values of specific parameters 634 

(e.g. leaf temperature and boundary layer conductance), circumventing the reliance on default values 635 

which may improve in accuracy as research in these topic areas advances. Additionally, if the researcher 636 

is able to provide more accurate estimates for such parameters, they can be easily incorporated. 637 

Advancement of the modeling component will necessitation the inclusion of post-photosynthetic 638 

metabolism and transport mechanisms (Gessler et al., 2014). As such, we acknowledge that the 639 

calculated δ18Omsw values may not represent the absolute δ18O values of water utilized by the tree, yet 640 

they remain valuable for interpreting ecohydrological interactions as long as isotopically distinct 641 

endmembers are present. 642 

We have shown the ISO-Tool capability to add value to analyses of restoration efforts, wherein 643 

the back-calculated source waters from a particular tree can be used to assess whether it benefited 644 

from increased flow support of an elevated floodplain water table (PB). We also applied ISO-Tool to 645 

ascertain water use on sub-annual timescales, and this was demonstrated to be much more powerful 646 

than annual analyses, providing useful information on the seasonal variability of water sources during an 647 

annual growth cycle (DM and MT). This latter work pointed to strong seasonal differences in water 648 

usage for the same species at different locations along the Rhône River, a result that would not appear 649 

in annual data. 650 

The back-calculation of tree δ18Osw, is a more robust technique than δ18Ocell for determining the 651 

water source utilized by trees. We suggest that ISO-Tool is well suited for site-based studies and those 652 

along climatic transects, as it is capable of shedding light on the nature of hydrological partitioning 653 

within the plant rooting zones. 654 

We developed a new tool capable of providing estimates of the δ18O of source-water(s) utilized 655 

by trees and incorporating a hierarchical data quality scheme for the constraint of model variables and 656 

interpretative techniques of model output, based on available data sources. We foresee ISO-Tool being 657 

useful in a wide range of ecohydrological applications with retrospective insights into source-water 658 

utilization by trees becoming an increasingly diagnostic tool under future hydroclimatic changes. 659 
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 1114 

FIGURE CAPTIONS 1115 

Figure 1: Overview of ISO-Tool and the primary components. 1116 

Figure 2: Key model components and how the required user input values are utilized (a-d), with 1117 

associated terminology, and schematics of each process (e). 1118 

Figure 3: Results of sensitivity analyses of independently (a) and co-varied (b-g) input variables on the 1119 

modeled δ18Osw value. Sensitivity analyses of co-varied model inputs of (b )T and RH, (c) RH and δ18Owv, 1120 

(d) T and δ18Owv, (e) δ18Owv with gs/E pairing, (f) RH with gs/E pairing and (g) T with gs/E pairing. Grey 1121 

shading in b-d indicates the range of δ18Omsw results produced by varying the respective input variables 1122 

over their observed range of variance for the DM site (May-Sep: 2000-2010). 1123 

Figure 4: The ISO-Toolkit components and interpretative techniques, divided into tool groups based on 1124 

data availability and resolution, with Tool Group A being the most desirable set of data and 1125 

interpretative techniques. A review of the mentioned datasets and interpretative techniques is given in 1126 

the supplementary text material (S1-3). 1127 

Figure 5: The mean annual δ18Omsw for Populus nigra trees at site PB in relation to potential endmember 1128 

water sources mean δ18O (a), sub-annual δ18Omsw for Fraxinus excelsior and Populus nigra at site DM 1129 

shown in relation to potential endmember water source mean δ18O (b) and the annual and sub-annual 1130 

δ18Omsw for Fraxinus excelsior at site MT (c). Colored banding around all reported δ18Omsw is ± 1SD (based 1131 

on the output of 1000 Monte Carlo simulations) and endmember water sources are shown as mean δ18O 1132 

± 1SD.  1133 


